Exercise 9

(a) Use a graph to find a number δ such that

$$
\text { if } \quad 2<x<2+\delta \quad \text { then } \quad \frac{1}{\ln (x-1)}>100
$$

(b) What limit does part (a) suggest is true?

Solution

Part (a)
Below is a graph of $1 /[\ln (x-1)]$ versus x.

For $1 /[\ln (x-1)]$ to be greater than $100, \delta$ has to be less than about 0.01005 .

Part (b)

$2<x<2+\delta$ indicates that x goes to 2 from the right, and $1 /[\ln (x-1)]>100$ indicates that the function is $1 /[\ln (x-1)]$ and that the limit is infinity (Definition 6 on page 112).

$$
\lim _{x \rightarrow 2^{+}} \frac{1}{\ln (x-1)}=\infty
$$

To verify this limit, plug in 2^{+}for x.

$$
\lim _{x \rightarrow 2^{+}} \frac{1}{\ln (x-1)}=\frac{1}{\ln \left(2^{+}-1\right)}=\frac{1}{\ln 1^{+}}=\frac{1}{0^{+}}=\infty
$$

